I-15 Express Lanes Project Southern Extension RAPID ASSESSMENT OF STREAM CROSSINGS

Project Limits: *Riverside I-15, PM 20.3/PM 40.1* Project ID: *08-18000063*

EA: RIV 08-0J0820

December 2021

Prepared for:

Riverside County Transportation Commission 4080 Lemon Street Riverside, CA 92501

California Department of Transportation - District 8 464 West 4th Street San Bernardino, CA 92401

REGISTERED CIVIL ENGINEER CERTIFICATION

This Rapid Assessment of Stream Crossings has been prepared under the direction of the following registered civil engineer. The registered civil engineer attests to the technical information contained herein and the engineering data upon which recommendations, conclusions, and decisions are based.

Perla barca

12/8/21

Perla Abarca REGISTERED CIVIL ENGINEER C66884

DATE

Table of Contents

1	Introduct	tion	1
	1.1 Pro	oject Description	1
	1.2 Pu	rpose and Need for the Project	4
	1.	.2.1 Purpose	4
	1.	.2.2 Need	4
	1.3 Pro	oject Objectives	5
2	Procedur	re	7
2		apid Stability Assessment (RSA) Requirements	
		ffice Preparation	
		.2.1 Cross Section	
		.2.2 Reach Classification	
		2.3 Physiographic Province	
3	Cita Minia		
3		1	
		1 (PM 26.3)	
		1 lvert 2 (PM 30.2)	
		ayhew Wash	
		ılvert 4 (PM 32.3)	
		own Canyon Wash	
		11vert 6 (PM 35.7)	
		alvert 7 (PM 37.2)	
4			
		2 alvert 1 (PM 26.3)	
		emescal Wash	
		2 (PM 30.2)	
		2 alvert 3 (PM 30.3)	
		ayhew Wash	
		2 alvert 4 (PM 32.3)	
		alvert 5 (PM 33.6)	
		rown Canyon Wash	
		2 alvert 6 (PM 35.7)	
	4.10 Cu	alvert 7 (PM 37.2)	3
5	Summary	y2	4
6	Referenc	ces	5

List of Tables

ble 2-1: RSA Requirements

List of Figures

Figure 1-1: I-15 ELPSE Location Map	3
Figure 3-1: Aerial Image of Temescal Wash November 2009	
Figure 3-2: Aerial Image of Temescal Wash April 2014	14
Figure 3-3: Aerial Image of Temescal Wash August 2018	15
Figure 3-4: Aerial Image of Temescal Wash June 2020	15
Figure 3-5: Aerial Image of Mayhew Wash November 2009	18
Figure 3-6: Aerial Image of Mayhew Wash April 2014	18
Figure 3-7: Aerial Image of Mayhew Wash June 2018	19
Figure 3-8: Aerial Image of Mayhew Wash June 2020	19

Technical Appendices

Appendix A: Exhibits Appendix B: Field Forms

1 Introduction

The I-15 currently experiences heavy congestion with existing traffic volumes that often exceed current highway capacity along several segments of Interstate 15 (I-15) between State Route 74 (SR-74) (Central Avenue) and El Cerrito Road. Due to forecasted population growth and the continued development to support the projected growth in the region, the I-15 corridor is expected to continue to experience increased congestion and longer commute times that are projected to negatively affect traffic operations along the freeway mainline. The purpose of the I-15 Express Lanes Project Southern Extension (ELPSE or the Project) is to provide a long-term solution to reduce existing congestion, improve traffic operations, and accommodate future traffic volumes that are forecasted in this area.

1.1 Project Description

The Riverside County Transportation Commission (RCTC), in cooperation with the California Department of Transportation (Caltrans), is proposing to construct new lanes along Interstate 15 (I-15) between Post Mile (PM) 21.2 and PM 38.1 in Riverside County, California. The primary component of the I-15 Express Lanes Project Southern Extension (Project) would be the addition of two tolled express lanes¹ in both the northbound and southbound directions within the median of I-15 from State Route 74 (SR-74) (Central Avenue) (PM 22.3) in the City of Lake Elsinore, through the unincorporated Riverside County community of Temescal Valley, to El Cerrito Road (PM 38.1) in the City of Corona, for a distance of approximately 15.8 miles. The proposed Project would also add a southbound auxiliary lane between both the Main Street (PM 21.2) offramp and SR-74 (Central Avenue) on-ramp (approximately 0.75 mile), and the SR-74 (Central Avenue) off-ramp and Nichols Road on-ramp (PM 23.9) (approximately 1 mile). Along with the lane additions, which would extend from PM 21.2 to 38.1, the proposed Project would include widening of up to 14 bridges, potential construction of noise barriers, retaining walls, drainage systems, and implementation of electronic toll collection equipment and signs. In addition, due to the southbound express lanes access between the Cajalco Road and Weirick Road interchanges, the southbound I-15 Weirick Road off-ramp would be configured as a dual lane exit. Associated improvements for the toll lanes, including advance signage and transition striping, would extend approximately 2 miles from each end of the express lane limits to PM 20.3 in the south and PM 40.1 in the north. The proposed lane additions and supporting infrastructure are expected to be constructed primarily within the existing State right of way. This Project is included in the 2019 Federal Transportation Improvement Program (FTIP) as Project ID RIV170901. It is also included in the Southern California Association of Governments' (SCAG) Connect SoCal 2020-2045 Regional Transportation Plan (RTP)/Sustainable Communities Strategy (SCS) as Project ID 3160001.

¹ Express lanes are traffic lanes that are separated from general purpose lanes where users are charged a toll to use the lanes.

This Project is included in the 2019 Federal Transportation Improvement Program (FTIP) as Project ID RIV170901. It is also included in the Southern California Association of Governments' (SCAG) Connect SoCal 2020–2045 Regional Transportation Plan (RTP)/Sustainable Communities Strategy (SCS) as Project ID 3160001.

The FTIP and RTP listings for this Project were amended in April 2021 to accurately reflect the scope and limits of the Project as currently proposed. The amended FTIP and RTP listings will state the following:

IN WESTERN RIVERSIDE COUNTY - ON I-15, ADD 2 EXPRESS LANES IN EACH DIRECTION, GENERALLY IN THE MEDIAN, FROM SR-74 (CENTRAL AVENUE) (PM 22.3) IN THE CITY OF LAKE ELSINORE TO EL CERRITO ROAD (PM 38.1) IN THE CITY OF CORONA. CONSTRUCT SOUTHBOUND AUXILIARY LANE FROM MAIN STREET (PM 21.2) TO SR-74 (CENTRAL AVENUE) (PM 22.3) AND FROM SR-74 (CENTRAL AVENUE) (PM 22.3) TO NICHOLS ROAD (PM 23.9). SIGNAGE AND TRANSITION STRIPING EXTENDS TO PM 20.3 TO THE SOUTH AND PM 40.1 TO THE NORTH.

Figure 1-1: I-15 ELPSE Location Map

1.2 Purpose and Need for the Project

This section separately summarizes the recognized purpose and need for the proposed ELPSE.

1.2.1 Purpose

The purpose of the proposed Project is to:

- Improve and manage traffic operations, congestion, and travel times along the corridor
- Expand travel choice along the corridor
- Provide an option for travel time reliability
- Provide a cost-effective mobility solution
- Expand and maintain compatibility with the express lane network in the region

1.2.2 Need

Existing traffic volumes often exceed current highway capacity along several segments of I-15 between SR-74 (Central Avenue) and El Cerrito Road. Due to forecasted population growth and the continued development to support the projected growth in the region, the I-15 corridor is expected to continue to experience increased congestion and longer commute times that are projected to negatively affect traffic operations along the freeway mainline.

The adopted SCAG 2016 RTP Growth Forecast estimates a 36.7-percent increase in population in Riverside County between 2015 and 2040. SCAG's recently adopted Connect SoCal (2020–2045 RTP/SCS) Growth Forecast estimates a 38.3-percent increase in population in Riverside County between 2020 and 2045, with the number of households and employment increasing by approximately 30.5 percent and 34.02 percent, respectively. In the City of Corona, the 2020–2045 RTP/SCS Growth Forecast estimates an 11.6-percent increase in population from 2016 to 2045 and an 11.7-percent increase in households. The 2020–2045 RTP/SCS also found of the top three counties where Los Angeles residents migrate, Riverside County places third. In 2017, the number of Los Angeles migrants to Riverside County was approximately 11,000. Additionally, based on the 2016–2040 RTP/SCS Final Growth Forecast by Jurisdiction, the City of Corona is estimated to experience a 3.7-percent increase in population between 2020 and 2045. According to the same source, the City of Lake Elsinore is projected to see a 76.8-percent increase in population. This projected growth is expected to place a high demand on existing transportation facilities and services.

Existing regional transit in Riverside County includes the Riverside Transit Agency (RTA) and Metrolink, which connects to various local transit services offered by municipalities (i.e., Corona Cruisers). RTA operates a weekday commuter bus service (Route 205/206) along I-15 and State Route 91 (SR-91) for passengers traveling between the City of Temecula in Riverside County and the City of Orange in Orange County. Within the proposed Project limits, this route offers stops at Dos Lagos, Temescal Canyon Road (Tom's Farms), and Nichols Road. Metrolink and Amtrak also operate within the northwestern portion of Riverside County but do not currently offer rail transit options that would serve the populations traveling through Temescal Valley between Corona and Lake Elsinore. Overall, regional transit options are limited for travelers south of Corona's city limits.

The Express Lanes Network in both Riverside and San Bernardino Counties has been growing rapidly in response to the increased inter-county travel demand. Development of an extensive

regional express lanes network is a key strategy in the 2020–2045 RTP/SCS that aims to improve travel time reliability, provide travel choices, and ensure existing freeway capacity is optimized within the SCAG region. In 2017, RCTC completed construction of the SR-91 Express Lanes in the City of Corona—the first Express Lanes constructed in Riverside County. RCTC's I-15 Express Lanes Project (ELP), which extends the SR-91 Express Lanes Network north and south of SR-91 along I-15 through the Cities of Jurupa Valley, Eastvale, Norco, and Corona, opened to traffic in 2021. North of the I-15 ELP, in 2021 San Bernardino County Transportation Authority will break ground on the I-15 Corridor Project, which will construct Express Lanes in both directions along I-15 between Cantu-Galleano Ranch Road in the City of Jurupa Valley and Duncan Canyon Road in the City of Fontana. In addition to providing continuity of Express Lanes north of the I-15 ELP, the I-15 Corridor Project will connect to the I-10 Corridor Project (Phase 1), which is currently under construction and will add Express Lanes in each direction on I-10 between the Cities of Montclair and Upland. Once these projects are completed in 2021, the southern terminus of the Express Lanes Network in the Inland Empire will terminate at Cajalco Road on I-15.

As federal, state, and local funding becomes constrained and additional projects are developed to maintain the condition of existing roadways, it has become increasingly challenging for transportation agencies to develop, construct, operate, and maintain new projects that improve mobility in heavily congested corridors. Based on this situation, alternative funding streams like federal loans and revenue bonds can be utilized to fill the funding gaps. In some cases, if financial obligations are met on Express Lane projects, excess toll revenue can provide additional funding to invest in other improvements within the corridor.

Currently, north-south mobility options for motorists are limited through this portion of Riverside County. Besides local streets, the only parallel route for motorists is Interstate 215, which is over 10 miles east of I-15 and generally serves a different region within Riverside County. Under Existing Conditions (2019)¹ during the AM peak hour, northbound I-15 experiences heavy congestion at the Cajalco Road interchange due to commuter traffic along the corridor. This heavy congestion during the AM peak hour results in a bottleneck at the Cajalco Road on-ramp that extends to the Indian Truck Trail off-ramp. Through the project limits, during the PM peak hour, the southbound direction experiences heavy congestion due to commuter traffic. The southbound I-15 bottleneck at the Cajalco Road on-ramp extends to the Magnolia Avenue on-ramp during the PM peak hour.

¹ Existing Conditions (2019) do not include the I-15 ELP from SR-60 to Cajalco Road, because that project was not operational in 2019.

1.3 Project Objectives

This report explains the application of a Rapid Stability Assessment (RSA) mandated by permits passed by the State Water Resources Control Board (SWRCB). The RSA was conducted for three separate creeks and seven regional cross culverts (as determined in Table 2.1) that pass through the ELPSE corridor. Stormwater runoff from Caltrans right-of-way and facilities are permitted under the provisions of the 2012 statewide National Pollutant Discharge Elimination System (NPDES) permit. The permit mandates a risk-based approach to be employed during planning and design for assessing stream stability at highway crossings and the potential impact upon existing or planned highway crossing structures. The assessment assists Caltrans in the analysis of pre-project channel stability and implementation of mitigation measures that are appropriate to protect structures and minimize stream channel bank and bed erosion.

2 Procedure

2.1 Rapid Stability Assessment (RSA) Requirements

The first step to performing a Rapid Stability Assessment (RSA) is to identify whether it is required. According to the Caltrans Hydromodification Requirements Guidance Storm Water Best Management Practices - Rapid Assessment of Stream Crossings (Manual), an RSA is performed if the proposed project meets the following four criteria:

- 1. The project includes any stream crossings.
- 2. The project includes one acre or more of net new impervious surface.
- 3. The project's new impervious surface is within a Threshold Drainage Area (TDA).
- 4. The stream crossings are "Waters of the US" as defined by U.S. Army Corps of Engineers (USACE) latest guidance on determination of jurisdiction for Clean Water Act section 404.

		Stream	Crossing	
	1. The project includes a stream crossing.	2. The project includes one acre or more of net new impervious surface.	3. The project's new impervious surface is within a threshold drainage area (TDA).	4. The stream crossings are "Waters of the US".
Wasson Canyon Channel (PM 21.57)		Х	Х	
Arroyo Del Toro Channel (PM 22.6)	Х	Х	Х	
Stovepipe Canyon Creek (PM 23.50)	Х	Х	Х	
Gavilan Wash (PM 25.55)	x	х	x	
Culvert 1 (PM 26.3)	Х	Х	Х	Х
Temescal Wash (PM 28.04)	Х	Х	Х	Х
Horsethief Canyon Wash (PM 29.13)	Х	Х	Х	
Indian Wash (PM 30.09)	Х	Х	Х	

Table 2-1: RSA Requirements

		Stream	Crossing	
	1. The project includes a stream crossing.	2. The project includes one acre or more of net new impervious surface.	3. The project's new impervious surface is within a threshold drainage area (TDA).	4. The stream crossings are "Waters of the US".
Culvert 2 (PM 30.2)	Х	Х	Х	Х
Culvert 3 (PM 30.3)	Х	х	х	Х
Mayhew Wash (PM 31.97)	Х	х	х	Х
Culvert 4 (PM 32.3)	Х	х	х	Х
Cold Water Wash (PM 32.96)	Х	х	х	
Culvert 5 (PM 33.6)	Х	х	х	Х
Brown Canyon Wash (PM 34.72)	Х	х	х	Х
Culvert 6 (PM 35.7)	Х	Х	Х	х

		Stream	Crossing	
	1. The project includes a stream crossing.	2. The project includes one acre or more of net new impervious surface.	3. The project's new impervious surface is within a threshold drainage area (TDA).	4. The stream crossings are "Waters of the US".
Bedford Wash (PM 36.58)	Х	Х	Х	
Culvert 7 (PM 37.2)	Х	Х	Х	Х

According to Table 2-1, three stream crossings and seven cross culverts (listed below) qualified for an RSA. Although most of the stream crossings satisfied three out of the four requirements, the distinction of "Waters of the US" ultimately determined which crossings were studied. The jurisdictional determinations for Requirement 4 reference Table A in Appendix C of the Jurisdictional Delineation Report was submitted to Caltrans for approval in November 2021, for the I-15 ELPSE.

In addition, the Santa Ana Region (SAR) Hydromodification Management Plan (HMP) provides a roadmap guide to help identify if a stream within a project is subject to Hydrologic Conditions of Concern (HCOC). An EHM (Engineered, Hardened, and Maintained) stream is one that is constructed for stormwater conveyance and is owned and maintained by responsible agencies. Per the SAR HMP (Section 2.2.i Hydromodification Susceptibility Mapping), the risk of hydromodification is significantly reduced for an EHM stream due to the armoring of the channel and engineered design, thus allowing EHM features to be excluded from future analysis.

Assessments for the vertical and lateral stability of the following stream crossings were completed for the highway crossing structure potentially affected by additional impervious surfaces proposed in the ELPSE:

- Culvert 1 (PM 26.3)
- Temescal Wash
- Culvert 2 (PM 30.2)
- Culvert 3 (PM 30.3)
- Mayhew Wash
- Culvert 4 (PM 32.3)
- Culvert 5 (PM 33.6)
- Brown Canyon Wash
- Culvert 6 (PM 35.7)
- Culvert 7 (PM 37.2)

The TDA is a function of stream width and is an area draining to a location at least 20 channel widths (20W) downstream of the stream crossing.

The estimated channel width is defined by the horizontal distance from the top of the banks. The width is used to determine the areas of focus upstream and downstream of the crossing for each TDA. If there are major discontinuities within the 20W-long reach, such as steps, culverts, grade controls, tributary junctions, or other features and structures, an additional 5W to 7W should be examined past the discontinuity.

After the downstream reach was identified, the contributing TDA was determined using an online tool called StreamStats that was provided by the U.S. Geological Survey (USGS). The TDA for streams analyzed can be found in Exhibits 1 and 2 of Appendix A.

2.2 Office Preparation

Office preparation is required prior to the site visit. This included determining cross section locations, reach classifications, and physiographic province; these are described in more detail below.

2.2.1 Cross Section

Since an RSA was required, the limits of the representative reaches were determined from Section 2-2 in the Manual that indicates reaches should be $20*W_{down}$. The formula assumes the first cross section to be on the downstream end of the representative reach. The subsequent cross sections were calculated at intervals of $(W_{down} + L_{crossing} + W_{up}) / 9$. Variables W_{down} and W_{up} are the lengths of the downstream and upstream reaches, respectively. $L_{crossing}$ is the length of the crossing in the streamwise direction. This method is typically used for bridge and culvert crossings. For culvert crossings where it is difficult to determine the incised channel due to ephemeral flows, a conservative channel width of 1.5 times the culvert diameter was assumed and applied to the stream reach.

The stream centerline was determined in Google Earth and exported to ArcGIS. In ArcGIS, HEC-GeoRAS was used to generate 10 equally spaced cross sections along the stream centerline. Although 10 cross sections are generated, select cross sections may be blank on the field form due to their inaccessible nature or engineered condition. The data was then exported back to Google Earth in the form of a KMZ file. The KMZ file assisted with real-time tracking to ensure accurate spacing between cross sections when in the field.

2.2.2 Reach Classification

Stream channel classification also needed to be determined, requiring a combination of office preparation and field observation. The office preparation required the use of Table 3 – Montgomery-Buffington Stream Classification System and Table 5 – Simplified Channel Reach Classification System in the Manual. Table 3 classifies stream channel reaches into seven categories while Table 5 recognizes only three stream categories of stream channel reaches. Table 3 is used as a more detailed breakdown showing the characteristics of each stream. Ultimately, Table 5 was used to determine the final stream classification; the stream classification was based on bed, slope, geometry, and response type characteristics.

2.2.3 Physiographic Province

California is divided into 11 physiographic regions. As the terrain in each subregion is similar, the geology is easier to identify. The subregion for the ELPSE area was determined using various maps. It is in the Peninsular Ranges region.

3 Site Visit

The site visit for the 1-15 Express Lanes includes 10 stream and culvert crossings that are susceptible to hydromodification. Each natural crossing or stream was evaluated for hydromodification or for notable failures if it is EHM. Natural channels are susceptible to hydromodification resulting from runoff from redevelopment or new development. The location of the streams can be found in Appendix A and Field Forms completed during the site visit can be found in Appendix B.

3.1 Culvert 1 (PM 26.3)

Culvert 1 is a 42-inch RCP that crosses the I-15 at approximately PM 26.3. The culvert is in Lake Elsinore and conveys flows from north of the I-15 to south of the I-15 adjacent to Walker Canyon Road. On the upstream end, erosion was not present. The drainage area upstream is a heavily vegetated basin with no well-defined flow path. The downstream end of Culvert 1 outlets into an incised channel with ephemeral flows. The incised channel and channel banks consist of dense vegetation, causing it to be difficult to observe erosion.

3.2 Temescal Wash

Temescal Wash is a trapezoidal channel located west of Horsethief Road and crosses the I-15 at approximately PM 28.04. The Temescal Wash Bridge (No. 56-0680) is a four-span, continuous reinforced concrete box girder with open-end diaphragm abutments. The bents will be 3-column RC bents and the pier walls are all on steel piles. The spans are (S) 80.7 feet, 107.3 feet, 107.2 feet, and 80.6 feet (N).

The bridge inspection report (BIR) for Temescal Wash Bridge, dated February 19, 2020, states that the channel has soft sandy bottoms with an abundant number of trees and vegetation. The channel does not contain side-slope protection. Abutment 1 near the north end has eroded up to 2 feet wide by 3 feet deep. No obvious scour or exposed foundation was observed during the inspection. Figures 3-1 to 3-4 show aerial images of Temescal Wash taken from Google Earth at various times of the year. As shown in the figures, there is little evidence of geomorphology or channel instability.

The upstream reach of Temescal Wash is a meandering stream that is trapezoidal in shape and crosses under two pedestrian bridges and one local road. The side slopes are flatter in this area and the incised channels have minimal channel confinement. Further down the upstream reach, the channel confinement increases and there is more evidence of mass wasting and bank erosion. The channel bottom is approximately 35 feet wide. On the downstream reach, the channel continues to be confined with exposed channel banks. The banks are densely vegetated and vary from flat to vertical slopes. Human-made debris and large woody debris is present in the channel causing flow and channel alignment to divert. As the reach approaches Temescal Canyon Road, the flow is directed into eight corrugated metal pipes. This downstream-most cross section is fairly confined and has dense vegetation in the channel bed. Channel bank distress can be observed from the presence of root exposure and mass wasting.

The following figures (3-1, 3-2, 3-3, 3-4) show the Temescal Wash area over more than a decade of time.

Figure 3-1: Aerial Image of Temescal Wash November 2009

Figure 3-2: Aerial Image of Temescal Wash April 2014

Figure 3-3: Aerial Image of Temescal Wash August 2018

Figure 3-4: Aerial Image of Temescal Wash June 2020

3.3 Culvert 2 (PM 30.2)

Culvert 2 is a 60-inch RCP transition to a 60-inch CSP that crosses the I-15 at approximately PM 30.2. The culvert is in Corona and conveys flows from north of the I-15 SB On-Ramp and directs it south of the I-15 NB Off-Ramp. The upstream reach of Culvert 2 is EHM and was not analyzed. Per Caltrans PIR 201.151 – Drainage System Restoration dated May 2021, the 60-inch CSP will be repaired to extend its design service life. The downstream reach of Culvert 2 consisted of a meandering channel. An incised channel was present and evidence of an ephemeral stream was observed. The channel bed consisted of sand and gravel while the banks consisted of tall grass and shrubs.

3.4 Culvert 3 (PM 30.3)

Culvert 3 is an 8 by 6-foot RCB that crosses the I-15 at approximately PM 30.3. The culvert conveys hillside flows from south of the I-15 and crosses Indian Truck Trail and I-15. It is assumed that the 8 by 6-foot RCB is in good condition, as it is not listed in Caltrans PIR 201.151 – Drainage System Restoration to be in need of repairs. It outlets north of I-15 where the flows join Indian Wash further downstream. The upstream reach of Culvert 3 is heavily vegetated with large gravel and rock. The stream bed is dry and under an ephemeral condition. The stream also shows evidence of bank erosion and obstructions caused by dried vegetation. The downstream reach of the culvert has similar stream characteristics as the upstream reach; some significant headcutting is present.

3.5 Mayhew Wash

Mayhew Wash is a natural, trapezoidal channel and is located between Temescal Canyon Road Interchange (north crossing) and Temescal Canyon Road Interchange (middle crossing); it crosses I-15 at approximately PM 31.97. The Mayhew Wash Bridge (No. 56-0674) is a single span, cast in place prestressed concrete box girder (6 cells) with open-end diaphragm abutments, all on steel "H" piles. The span is (S) 147.27 feet (N). Mayhew Wash belongs to the Temescal Wash Watershed.

The bridge inspection report for Mayhew Wash Bridge dated February 24, 2018 states that the channel has minor vegetation and a soft sandy bottom. The south embankment has partial concrete lined side slope protection; it is roughly 6.5 feet high, while the north embankment has partial rock side slope protection roughly 6.5 feet high with concrete slurry. The channel consists of disturbed open area downstream and of open vegetated areas with pockets of non-vegetated areas upstream.

During the site visit, the observations made substantiated the BIR. Erosion was observed at an abutment on the north end of the bridge. The erosion exposed a minor portion of the concrete side-slope. The channel itself was dry during the site visit, suggesting it was experiencing an ephemeral flow condition. Layers of sand and gravel were present in the channel underneath the bridge.

The upstream reach is a meandering channel that is trapezoidal in shape. The channel crosses under Temescal Canyon Road via an RCB culvert. The side-slopes just upstream and downstream of the crossing are engineered and comprised of rock slope protection. The sections of Mayhew Wash further upstream of this area continue to meander and retain the trapezoidal channel shape. The side-slopes in these areas are natural and exhibit signs of mass wasting and bank erosion. The channel bottom varies from approximately 35 to 200 feet.

The downstream reach of the channel also meanders and is trapezoidal in shape. The channel bed composition continues to be comprised of sand, clay, and gravel. As the sections for analysis move further downstream, the reach joins Temescal Wash. The sections in these areas were inaccessible due to dense vegetation or steep slopes. Figures 3-5 to 3-8 show aerial images of Mayhew Wash taken from Google Earth at various times of the year. As shown in the figures, there is little evidence of geomorphology or channel instability.

The following figures (3-5, 3-6, 3-7 and 3-8) show the Mayhew Wash area over more than a decade of time.

Figure 3-5: Aerial Image of Mayhew Wash November 2009

Figure 3-6: Aerial Image of Mayhew Wash April 2014

Figure 3-7: Aerial Image of Mayhew Wash June 2018

Figure 3-8: Aerial Image of Mayhew Wash June 2020

3.6 Culvert 4 (PM 32.3)

Culvert 4 is a 36-inch CMP that crosses the I-15 at approximately PM 32.2. It is assumed that the 36-inch CMP is in good condition, as it is not listed in Caltrans PIR 201.151 – Drainage System Restoration to be in need of repairs. The culvert conveys flows from a residential development south of the I-15 via an underground CMP. The flow enters an incised stream that is comprised of dense vegetation and a sandy material. The stream is a tributary Temescal Wash.

3.7 Culvert 5 (PM 33.6)

Culvert 5 is a 36-inch CMP that crosses I-15 at approximately PM 33.6. The culvert conveys hillside and residential flows from south of I-15 to north of I-15. The upstream reach is comprised of leafy vegetation and large woody debris. The stream bed composition is predominantly sand and shows signs of erosion caused by obstructions that consist of large trees and fallen branches, causing the channel to divert or meander. The bank conditions consist of raw banks or partial armoring with large rocks. Downstream of the culvert crossing, similar characteristics exist. The stream bed is also predominantly comprised of sand and the banks are raw due to mass wasting. The obstructions downstream consist of manmade debris or large rocks.

3.8 Brown Canyon Wash

Brown Canyon Wash is a concrete trapezoidal channel that crosses I-15 at approximately PM 34.72. Brown Canyon Wash Bridge (No. 56-0559L) is a continuous two-span reinforced concrete bridge. The bridge has seven T-girders with eight reinforced concrete columns pile bents and open-end diaphragm abutments. The double span is (S) 39 feet (N).

The bridge inspection report for Brown Canyon Wash, dated January 25, 2020, states that the channel is a partial trapezoidal dirt channel with concrete lined side slope protection combined with a rectangular channel under the bridge. No notable scour or erosion was noted.

Brown Canyon Wash is EHM and was not analyzed for erosion along each section. No notable cracks were observed in the field.

3.9 Culvert 6 (PM 35.7)

Culvert 6 is a 54-inch CSP that crosses I-15 at approximately PM 35.7. The culvert conveys residential hillside flows from the west and hillside flows via a concrete swale from the north. The culvert outlets east of I-15 where the flow enters a 54-inch RCP under a residential development. The upstream reach of Culvert 6 is a straight and natural stream with ephemeral flows present. The stream is well confined and does not show signs of bar development or bank erosion. The banks and stream bed are lined with vegetation upstream and engineered where they approach the culvert entrance. Culvert 6 is EHM on the downstream reach and was not analyzed.

3.10 Culvert 7 (PM 37.2)

Culvert 7 is a 12 by 10 foot RCP that crosses I-15 at approximately PM 37.2. The culvert conveys flows from south of the I-15 to north of the I-15. The watershed north of Culvert 7 consists of residential homes that drain into a rectangular channel upstream of Culvert 7.

Downstream of the culvert is a rectangular open channel that drains to an underground RCB. The channel outlets into Temescal Wash. The upstream and downstream reaches of the channel are engineered, hardened, and maintained and were not investigated for hydromodification. The channel and culvert conditions were inspected and appear to be in good condition. No sizable cracks nor notable failures were observed.

4 Results

The results for each creek were tabulated in the Field Form for Caltrans Rapid Assessment of Stream Channel Stability and Susceptibility to Hydromodification Induced Instability. The scores for each category per the 10 cross sections were averaged and totaled to form a raw score. The raw score was rated based on the stream channel type that was determined through office analysis and field observation. The Field Forms are found in Appendix B.

4.1 Culvert 1 (PM 26.3)

Culvert 1 was evaluated at 10 cross sections. Based on the Field Form, Culvert 1 received a raw score of 41 and was given a rating of "Excellent" based on a plane-bed stream. According to Section 5.1 of the Manual, the stream is laterally and vertically stable; it does not require a Level 2 assessment.

4.2 Temescal Wash

Temescal Wash was evaluated at eight cross sections. Two cross sections (3,6) were inaccessible due to dense vegetation. Based on the Field Form, Temescal Wash received a raw score of 58.5 and was given a rating of "Good" based on an engineered or channelized stream. According to Section 5.1 of the Manual, the stream is laterally and vertically stable; it does not require a Level 2 assessment.

4.3 Culvert 2 (PM 30.2)

Culvert 2 was evaluated at six cross sections. The downstream reach has four cross sections that are EHM and were not evaluated. Based on the Field Form, Culvert 2 received a raw score of 53.5 and was given a rating of "Good" based on a step-pool stream. According to Section 5.1 of the Manual, the stream is laterally and vertically stable; it does not require a Level 2 assessment.

4.4 Culvert 3 (PM 30.3)

Culvert 3 was evaluated at nine cross sections. The most downstream reach has one cross section that is EHM and was not evaluated. Based on the Field Form, Culvert 3 received a raw score of 52.7 and was given a rating of "Good" based on a pool-riffle stream. According to Section 5.1 of the Manual, the stream is laterally and vertically stable; it does not require a Level 2 assessment.

4.5 Mayhew Wash

Mayhew Wash was evaluated at six cross sections. Three cross sections (1-3) were inaccessible due to dense vegetation and the most upstream cross section (10) was located outside of the channel extents. Therefore, 4 cross sections were not evaluated. Based on the Field Form, Mayhew Wash received a raw score of 71.3 and was given a rating of "Good" based on an engineered or channelized stream. According to Section 5.1 of the Manual, the stream is laterally and vertically stable; it does not require a Level 2 assessment.

4.6 Culvert 4 (PM 32.3)

Culvert 4 was evaluated at five cross sections. The downstream reach has five cross sections that are EHM and were not evaluated. Based on the Field Form Culvert 4 received a raw score of 72.5 and was given a rating of "Good" based on a plane-bed stream. According to Section 5.1 of the Manual, the stream is laterally and vertically stable; it does not require a Level 2 assessment.

4.7 Culvert 5 (PM 33.6)

Culvert 5 was evaluated at 10 cross sections. Based on the Field Form, Culvert 5 received a raw score of 66.3 and was given a rating of "Good" based on a pool-riffle stream. According to Section 5.1 of the Manual, the stream is laterally and vertically stable; it does not require a Level 2 assessment.

4.8 Brown Canyon Wash

Although Brown Canyon Wash meets the four criteria required to perform an RSA, the channel crossing is EHM on the upstream and downstream reaches. Therefore, the crossing was not evaluated.

4.9 Culvert 6 (PM 35.7)

Culvert 6 was evaluated at five cross sections. The downstream reach has five cross sections that are EHM and were not evaluated. Based on the Field Form, Culvert 6 received a raw score of 58.5 and was given a rating of "Good" based on a pool-riffle stream. According to Section 5.1 of the Manual, the stream is laterally and vertically stable; it does not require a Level 2 assessment.

4.10 Culvert 7 (PM 37.2)

Although Culvert 7 meets the four criteria required to perform an RSA, the channel crossing is EHM on the upstream and downstream reaches. Therefore, the crossing was not evaluated.

5 Summary

In summary based on the Rapid Stability Assessment of the proposed I-15 Express Lanes Project Southern Extension (Project) the results indicate all channels are in good condition or better, and that a Level 2 Analysis is not needed and Project will not adversely impact the downstream waters.

6 References

California Department of Transportation (Caltrans) Hydromodification Requirements Guidance Storm Water Best Management Practices, Rapid Assessment of Stream Crossings, High Level Stream Stability Analysis, February 2015.

California Department of Transportation Division of Maintenance Bridge Inspection Records Information System (BIRIS). Temescal Wash, February 2020.

California Department of Transportation Division of Maintenance Bridge Inspection Records Information System (BIRIS). Mayhew Wash, February 2018.

California Department of Transportation Division of Maintenance Bridge Inspection Records Information System (BIRIS). Brown Canyon Wash, January 2020.

I-15 Express Lanes Project Southern Extension (ELPSE) Jurisdictional Delineation Report, submitted to Caltrans for approval in November 2021.

California Department of Transportation (Caltrans) Project Initiation Report (PIR) 201.151 – Drainage System Restoration, May 2021, Project Limits PM30/PM33.

Santa Ana Region (SAR) Hydromodification Management Plan, January 2017.

APPENDIX A: EXHIBITS

Culvert 1 Threshold Drainage Areas

sti, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Stream Crossing TDA Outlet TDA I-15 Culvert 1 TDA=13 ac Culvert 1

Legend

^{5/19/2021} JN H:/pdsta/174273/GIS/MXD/I-15 ELPSE RSA XS 2.mxd <USER NAME>

Exhibit 4

A mxd >10 H; pdd; 174273/G[S/MXD/] 15 ELPSE RSA X & mxd >10 H; pdd; 19 H;

APPENDIX B: FIELD FORMS

Step 2. Check California Physiographic Province Step 2. Check California Physiographic Province Image: Cascade Range Transverse Range Sierra Nevada Peninsular Range Molountains Olorado Desert Sierra Lagan Molave Desert Molountains Molave Desert Sierra Lagan Molave Desert Molountains Molountains Molave Desert Molountains Molountains Molave Desert Molountains Molountains Molountains Molountains Molountains Molountains Molountains Molountains Molountains Molountains Molountains Molountains Molountains Molountains Molountains	-							
: April 15, 2021 Image: Coast Ranges Brian Chung Cascade Range Transverse Ranges :: Garrett Ribas Cascade Range Peninsular Ranges :: Sintan Chung Cascade Range Peninsular Ranges :: Sintan Chung Cilvert 1 (PM 26.3) Sierra Nevada Peninsular Ranges :: Sintan Chung Cilvert 1 (PM 26.3) Sierra Nevada Peninsular Ranges :: Sintan Chung East Valley, CA Sierra Valley Olorado Desert :: Clear, sunny Basin and Range Colorado Desert :: Minitan exclusions Basin and Range Stability Indicators (Below) and Image: Stability Indicators (B	rovince	Step 3. Check Stream Type(s)	k Stream Ty		Step 5. Review Rest	Step 5. Review Resulting Score of Hydromodification	dification	Step 6. Summarize Site Score and Rating
Brian Chung Cascade Range Transverse Range s: Garrett Ribas Culvert 1 (PM 26.3) Eastade Range Eansverse Range ration Temescal Valley, CA Sierra Nevada Peninsular Range ons: Clear, sunny Important Mojave Desert dentify Associated File Locations Important Range Mojave Desert m Stability Indicators (Below) and Important Range Important Range sc.hmm?dates/cs/nest/st.st.bud Step 4. Enter Stability Indicator Ratings at 10 Important Range sc.hmm?dates/cs/nest/st.st.bud Important Range Important Range Important Range sc.hmm?dates/cs.st.st.st.st.ac.about Ratings Important Range Important Range Important Range m Stability Indicators (Below) and Important Range Important Range Important Range sc.hmm?dates/cs.st.st.st.ac.about Ratings Important Range Important Range Important Range Important Range sc.hmm?dates/cs.st.st.ac.about Rating Important Range Important Range Important Range Important Range sc.hmm?dates/cs.st.ac.about Rating Important Range Important Range Important Range Important Range Stab	Ranges	□ Bedrock	k		Susceptibility (Belo	Susceptibility (Below) Based on Stream Channel Type	inel Type	
Cullvert 1 (PM 26.3) Sierra Nevada Peninsular Range action Temescal Valley, CA Sierra Nevada Peninsular Range ons: Clear, sunny Mojave Desert Mojave Desert Identify Associated File Locations Great Valley Colorado Desert m Basin and Range Stability Indicator Ratings at 10 Stability Indicators (Below) and 1 2 3 4 5 6 Stability Indicators (Below) and 1 2 3 4 4 4 4 2	erse Ranges	Cascade	e		Plane-bed Plane-bed Caterrony	Cascade or	Braided	
Ons: Clear, sunny Mojave Desert Identify Associated File Locations Colorado Desert Identify Associated File Locations Basin and Range Colorado Desert Im Basin and Range Colorado Desert ps//gswest mbakerportal apps webappvieweri Basin and Range Colorado Desert ps//gswest mbakerportal apps webappvieweri Basin and Range Colorado Desert ps//gswest mbakerportal apps webappvieweri Basin and Range Colorado Desert ps//gswest mbakerportal apps webappvieweri Basin and Range Colorado Desert ps//gswest mbakerportal apps webappvieweri Step 4. Enter Stability Indicator Ratings at 10 cs.huni/ut=-e4_0538377tebe/obse/0res/0res/1/gstabut 1 2 3 4 5 6 for the constraint 1 2 3 4 5 6 2 for the constraint condinates recorded loss X X X X X X for the cost loss of on XS where GPS X X X X X X for the cost loss of on XS where GPS X X X X X X for the	ular Ranges	Step-Pool			1.000	Channels	Channels	
Identify Associated File Locations Identify Indicators	e Desert	Enginee	Engineered/channelized	lized	t		N/A	
ml Basin and Range Important (apps/webapty/webapt	do Desert	X Plane-Bed	Bed		Good 49 < F Fair 85 ≤ R	49 < R < 85 41 < R < 70 85 < R < 120 70 < R < 98 94	R < 94 94 ≤ R < 129	Kating
ps//gisvest.mbakerintLcom/bakerportal/apps/vebappvicwer/i Step 4. Enter Stability Indicator Ratings at 10 ex.hunifid=e42638377ebc4P040976e670c8745dbdd Step 4. Enter Stability Indicator Ratings at 10 Stability Indicators (Below) and Cross Section (XS) Numbers (Right) 1 2 3 4 5 6 Stability Indicators (Below) and Cross Section (XS) Numbers (Right) 1 2 3 4 5 6 PS shot? (check boxes for XS where GPS coordinates recorded) >> X X X X X X atershed and floodplain activity and impacts Evaluate at watershed-scale for upstream and downstream and		Pool-Riffle	ffle		Poor	98 <u><</u> R	129 <u><</u> R	
Step 4. Enter Stability Indicator Ratings at 10 Step 4. Enter Stability Indicator Ratings at 10 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 3 4 4 4 2 1 4 4 4 4 4 2 3		Dune-Ripple	ipple	8	R = Raw Score			
Step 4. Enter Stability Indicator Ratings at 10 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 4 5 6 1 2 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 1 2 2 2 2 2 2 2 2 3 <th< th=""><td></td><td>□ Braided</td><td>7</td><td></td><td></td><td></td><td></td><td></td></th<>		□ Braided	7					
Stability Indicators (Below) and Cross Section (XS) Numbers (Right) GPS shot? (check boxes for XS where GPS coordinates recorded) >> Watershed and floodplain activity and impacts Watershed and floodplain activity and impacts Flow characteristics Channel pattern Entrenchment/channel confinement Bed material	at 10	Equally-Spaced Cross	oss Sections	S				Notes by Cross Section
Cross Section (XS) Numbers (Right) GPS shot? (check boxes for XS where GPS coordinates recorded) >> Watershed and floodplain activity and impacts Flow characteristics Channel pattern Entrenchment/channel confinement Bed material		7 Q	ο	10	Overview Entire Reach	Reach Score for	•	The upstream cross sections are close in proximity to each
GPS shot? (check boxes for XS where GPS coordinates recorded) >> Watershed and floodplain activity and impacts Flow characteristics Channel pattern Entrenchment/channel confinement Bed material		-	ח		Upstream Dow	Downstream Reach	-	other. Stability indicator ratings are similar for all cross sections.
Watershed and floodplain activity and impacts Flow characteristics Channel pattern Entrenchment/channel confinement Bed material		X	X	X			2	
Flow characteristics Evaluate at watershed-scale for upstream and Channel pattern 4 4 4 4 4 Entrenchment/channel confinement 3 3 3 3 3 3 Bed material 2 2 2 2 2 2 2	downstream reach	es >			4	4 5.5	m	
Channel pattern44444Entrenchment/channel confinement33333Bed material222222Entrenchment on time of condining to the time of condinin	downstream reaches	es >			7	7 5.5	4	
Entrenchment/channel confinement 3 3 3 3 Bed material 2 2 2 2	2	2	2	2		r	S	
Bed material 2 2 2 2 Ec = annovimate necessition of cared in hod	3	3 3	3	3		3	9	
		2 2	2	2		2	2	
10% 10% 10% 10% 10% 1	10%	10% 10%	10%	10%			8	
6 Bar development 3 3 3 3 3 2	2	2 2	2	2		2.5	6	
7 armor layer, LWD jams, grade controls, bridge 3 3 3 3 3 bed paving, revetments, dikes, vanes, or riprap. 3 3 3 3 3	e	3	ю	ю		က	10	
8Bank soil texture and coherence33332	2	2 2	2	2		2.5	11	
9 Average bank slope angle 2 <th2< th=""> 2 2 2</th2<>		2 2	2	2		2	12	
10 Vegetative or engineered bank protection 3 3 3 3 7	7	7 7	2	7		5	13	
11 Bank erosion 2 <th2< th=""> <th2< th=""> 2 <th< th=""><td>2</td><td>2 2</td><td>2</td><td>2</td><td></td><td>2</td><td>14</td><td></td></th<></th2<></th2<>	2	2 2	2	2		2	14	
12 Mass wasting or bank failure 2 2 2 2 2 2 2		2 2	2	2		2	U/S	
Stream crossing alignment with flow and Evaluate only for upstream approach > 13 distance from stream crossing to upstream meander impact point. Evaluate only for upstream						ĸ	D/S	

(b) Annu (b) State field Mathematication State field State field <th< th=""><th>Step 1. Pr</th><th>Step 1. Provide Basic Information</th><th>Sti</th><th>Step 2. Check California Physiographic Province</th><th><pre>c California</pre></th><th>Physiogra</th><th>phic Provin</th><th>ce</th><th>Step 3.</th><th>Step 3. Check Stream Type(s)</th><th>sam Type(</th><th></th><th>ep 5. Review</th><th>Resulting Scor</th><th>e of Hydromodif</th><th>cation</th><th>Step 6. Summarize Site Score and Rating</th><th>nd Rating</th></th<>	Step 1. Pr	Step 1. Provide Basic Information	Sti	Step 2. Check California Physiographic Province	<pre>c California</pre>	Physiogra	phic Provin	ce	Step 3.	Step 3. Check Stream Type(s)	sam Type(ep 5. Review	Resulting Scor	e of Hydromodif	cation	Step 6. Summarize Site Score and Rating	nd Rating
Briand Durate Control Register Control Register Control Register Control Register Control RegisterDescription Control Register Control Register Control RegisterDescription Control Register R		2021		Modoc Pl	iteau		Coast Range	Š		drock			sceptibility (Selow) Based o	In Stream Chann	el Type		
If Function If matrix		ung Libas		Cascade R	ange		ransverse	anges	ى ا	iscade						ided		
oriely section Image: light se	Tem Tem	escal Wash (PM 28.04) Flsinore CA		Sierra Nev			Peninsular	Zanges	<i>5</i>	Pool						annels	Kaw Score	58.5
Identify shootedated file locationsIdentify shootedated file locationsIdent	onditions: Clear	r, sunny		Klamath N	lountains		Vojave Des	ert		igineered/o	thannelize				\vdash	V/A		
Indefendence<	Identify A	ssociated File Locations		Great Vall	ey		Colorado D	sert		ane-Bed				-		< 94 R < 129		GOOD
Constraint of the final product method me				Basin and	Range					ool-Riffle			Poor			9 <u><</u> R		
Image: description of the constraint of th	otos									une-Ripple		R =	Raw Score					
Step 4. Enter Stability Indicator Ratings at 10 Equally-Spaced Cross Sections 1 2 3 4 5 6 7 8 9 10 Overview Entire Reach Score for N N N N N N N N Reach Score for N	https://giswest.mba. her_ndex.html?id=e4265	kerintl.com/bakerportal/apps/webappviewer/i 38377ebc4b9d976e670c8745dbdd						<u> </u>		aided.								
Stability Indicators (Below) and Cross Section (IOS) Numbers (Right) 1 2 3 4 5 6 7 8 9 10 Ourvition Boundariant Cross Section (IOS) Numbers (Right) IX IX <t< td=""><td></td><td></td><td>SI</td><td>4</td><td>er Stabilit</td><td>y Indicat</td><td>or Ratings</td><td>at</td><td>IIy-Space</td><td>d Cross Si</td><td>ections</td><td></td><td></td><td></td><td></td><td></td><td>Notes by Cross Section</td><td>ч</td></t<>			SI	4	er Stabilit	y Indicat	or Ratings	at	IIy-Space	d Cross Si	ections						Notes by Cross Section	ч
Consistential Solumenes (Right) C <thc< th=""> C <thc< th=""> C <thc< td=""><td>Stability</td><td>Indicators (Below) and</td><td></td><td>6</td><td>~</td><td>4</td><td>ۍ ا</td><td>9</td><td>~</td><td>~</td><td>σ</td><td></td><td>verview En</td><td>tire Reach</td><td>Score for</td><td>1</td><td></td><td></td></thc<></thc<></thc<>	Stability	Indicators (Below) and		6	~	4	ۍ ا	9	~	~	σ		verview En	tire Reach	Score for	1		
coordinatestrendial by Martestrendial by Martestrendial by Martestrendial by Martestrendial by Martestrendial by Flow dratteristicsCoordinatestrendial by Martestrendial by Martestrendial by Flow dratteristicsCoordinatestrendial by Martestrendial by Flow dratteristicsCoordinatestrendial by Martestrendial by Flow dratteristicsCoordinatestrendial by 	Cross Sect GPS shot? (ch	ion (XS) Numbers (Right) eck boxes for XS where GPS	• [2	• [2	, [• 🛛	• ⊵	>	. [2	b	⊳ ⊵	5	ostream	ownstream	Reach	· ~		_
Watershed and from part and drown reaches798How characteristicExolute at watershed-scale from part and drown reaches7988How characteristicExolute at watershed-scale from part and drown reaches79988Channel pattern3410 <th< td=""><td>coord</td><td>linates recorded) >></td><td>⊴</td><td>⊴</td><td></td><td>⊴</td><td>3</td><td></td><td><</td><td></td><td></td><td>⊴</td><td></td><td></td><td></td><td>•</td><td></td><td></td></th<>	coord	linates recorded) >>	⊴	⊴		⊴	3		<			⊴				•		
Flow characteristicsEvaluate at waterished-scale for upstream and ownstream reaches >333		d floodplain activity and impacts	Evaluate a	at watersh	ed-scale fo	r upstrear	n and dow	ıstream rea					2	6	ω	ß	Dense vegetation. Inaccessible.	
Channel pattern 3 4 2 2 4 2 4 3		ristics	Evaluate a	at watersh	ed-scale fo	r upstrear	n and dow	ıstream rea					3	3	З	4		
Entruction 9 7 1 3 5 4 7 5 5 6 51 51 Bed material 3 3 3 3 3 3 3 3 3 3 3 3 5 3 <td></td> <td>L</td> <td>3</td> <td>4</td> <td>ļ</td> <td>9</td> <td>2</td> <td></td> <td>4</td> <td>2</td> <td>4</td> <td>ε</td> <td></td> <td></td> <td>3.5</td> <td>5</td> <td></td> <td></td>		L	3	4	ļ	9	2		4	2	4	ε			3.5	5		
Bed material 3 <		:/channel confinement	6	7		٦	3		5	4	7	5			5.1	9	Dense vegetation. Inaccessible.	
Fs = approximate percentage of sand in bed gediments, 0 to 00.10% <t< td=""><td></td><td></td><td>3</td><td>З</td><td></td><td>2</td><td>3</td><td></td><td>3</td><td>3</td><td>3</td><td>3</td><td></td><td></td><td>2.9</td><td>7</td><td></td><td></td></t<>			3	З		2	3		3	3	3	3			2.9	7		
Bar development411112152Obstructions, including bedrock outcrops, armor layer, LWD jams, grade controls, bridge bed paving, reverments, dikes, vanes, or riprap.2121222Obstructions, including bedrock outcrops, armor layer, LWD jams, grade controls, bridge 	Fs = approxim sediments, 0 to	rcentage of sand in	10%	10%		10%	10%					10%				8		
Obstructions, including bedrock outcrops, armor layer, LWD jams, grade controls, bridge bed paving, revetments, dikes, vanes, or riprap.106733745.25Benk solit exture and coherence3510673535.25Average bank solit exture and coherence352225333.55.25Average bank solit exture and coherence33324533.63.383.36Vegetative or engineered bank protection937474574.68Mass wasting or bank failure957444674.25Mass wasting or bank failure95911444674.25Mass wasting or bank failure9511444674.25Mass wasting or bank failure1111444444.25Mass wasting or bank failure1111444444.25Mass wasting or bank failure1111444444.25Mass wasting or bank failure11114444.254.25Mass wasting or bank failure111144.454.454.454		ent	4	-		-	-		-	2	-	5			2	6		
Bank solit exture and coherence 3 5 2 2 2 2 3 5 3 5 3 5 3 5 3 5 3 <t< td=""><td></td><td>including bedrock outcrops, WD jams, grade controls, bridge vetments, dikes, vanes, or riprap.</td><td>σ</td><td>N</td><td></td><td>10</td><td>Q</td><td></td><td>7</td><td>ε</td><td>7</td><td>4</td><td></td><td></td><td>5.25</td><td>10</td><td>Obstructions in the form of branches. Some undercutting, light mass wasting, rocks in slopes.</td><td>rocks in slo</td></t<>		including bedrock outcrops, WD jams, grade controls, bridge vetments, dikes, vanes, or riprap.	σ	N		10	Q		7	ε	7	4			5.25	10	Obstructions in the form of branches. Some undercutting, light mass wasting, rocks in slopes.	rocks in slo
Average bank slope angle 3 3 5 5 5 5 5 5 5 7 10 3 10 3 3.38 Vegetative or engineered bank protection 9 3 5 4 2 10 3 10 5.75 Bank erosion 8 5 4 3 3 7 4 5 4 88 Mass wasting or bank failure 9 5 1 1 1 4		ire and coherence	З	5		2	2		5	3	5	3			3.5	11		
Vegetative or engineered bank protection 9 3 5 4 2 10 3 10 5.75 Bank erosion 8 5 4 3 7 4 5 4.88 Mass wasting or bank failure 9 5 1 1 1 4 4 6 4 4.88 Stream crossing alignment with flow and 1 1 1 4 4 6 1 4.25		slope angle	3	3		2	5		3	3	3	5			3.38	12		
Bank erosion 8 5 4 3 7 4 5 4:88 Mass wasting or bank failure 9 5 1 1 4 4 6 4 4:88 Stream crossing alignment with flow and 1 1 1 4 4 6 4 4:25	0 Vegetative or	engineered bank protection	6	3		5	4		2	10	3	10			5.75	13		
Mass wasting or bank failure 9 5 1 1 4 4 6 4.25 Stream crossing alignment with flow and Friend of the stream crossing alignment with flow and Friend of the stream crossing alignment with flow and 7			8	5		4	З		Э	7	4	5			4.88	14		
Stream crossing alignment with flow and	2 Mass wasting c	or bank failure	6	5		-	1		4	4	4	9			4.25	U/S		
distance from stream crossing to upstream Evaluate only for upstream approach > / / / / / / / / / / / / / / / /	Stream crossin 13 distance from s meander impa	Stream crossing alignment with flow and distance from stream crossing to upstream meander impact point.	Evaluate (only for up	stream app	proach >									7	D/S		

	Stan 1 Brouide Basic Information	÷	nn 2 Chack	. California	Dhycioara	Sten 3 Check California Dhysiographic Drovince	9.	Ston 3	Stan 3 Chark Straam Tyna(s)	am Tunels		5 Review Re	sulting Score	of Hvdromodific	cation	Sten 6 Summarize Site Score and Bating	re and Bating
							5				T	ntibility (Bel	owl Based on	Susceptibility (Below) Based on Stream Channel Type	Type	are an anning the are are	
Date(s):): April 15, 2021		Modoc Plateau	ateau		Coast Ranges	Ş	- B	Bedrock								
erson	Daniel Price Percons: Samantha Carlson		Cascade Range	алде		Transverse Ranges	langes	ڻ ا	Cascade						Braided	1	Li C
				0	2		50	3	2		Cate	Category Dune	10	Step-pool Char	Channels	Raw Score	0.50
ite/Lo	Culvert 2 (PM 30.2) Site/Location Temescal Valley, CA		Sierra Nevada	ada		Peninsular Ranges	anges		Step-Pool			Ch	Channels	anneis			
ondit	Conditions: Clear, sunny		Klamath Mountains	lountains		Mojave Desert	ert		Engineered/channelized	hannelized		Ŧ			N/A	C	
	ā		Great Valley	ev		Colorado Desert	sert		Plane-Bed				49 < R < 85 41 < 85 < 85 < 85 < 85 < 85 < 85 < 85 < 8	41 < R < 70 R < 94 < R	R < 94 94 < R < 129	Kating	
GPS/*.kml			Basin and Range	Range				Pc	Pool-Riffle		Pc	+	+	+	<u>129 < R</u>		
Photos									Dune-Ripple		R = Rav	Raw Score					
ther	https://giswest.mbakerintl.com/bakerportal/apps/webappviewer/i Other_ndex.html?id=e42633377ebe4b9d97ee670e8745dbdd								Braided								
		S	ep 4. Ente	er Stabilit	ty Indicat	Step 4. Enter Stability Indicator Ratings	at 10 Equally-Spaced Cross	IIy-Space	d Cross Se	Sections	-					Notes by Cross Section	ction
	Stability Indicators (Below) and		2	m	4	L.	9	~	~	6	10 Over		e Reach	Score for	1		
	Cross Section (XS) Numbers (Right)			,		,	,		 ,	+		Upstream Dov	Downstream	Reach			
-	coordinates recorded) >>	\boxtimes	\boxtimes	\boxtimes	\boxtimes	X	X								2		
<u>></u>	Watershed and floodplain activity and impacts	Evaluate a	it watersh	ed-scale fo	ır upstrear	n and dow	Evaluate at watershed-scale for upstream and downstream reaches	ches >				7	4	5.5	ŝ		
2 FI	Flow characteristics	Evaluate a	Evaluate at watershed-scale for upstream	ed-scale fo	r upstrear	n and dow	and downstream reaches	ches >				10	10	10	4		
ບ ຕ	Channel pattern	4	2	7	9	4	-	EHM	EHM	EHM EI	EHM			4	5		
4 Er	Entrenchment/channel confinement	3	2	4	2	5	1		1					2.8	9		
5 ^B	Bed material	2	2	2	5	5	5							3.5	۲		
F Se	Fs = approximate percentage of sand in bed sediments, 0 to 100.	20%	20%	20%	50%	50%	50%	1							8		
9 8	Bar development	1	-	÷	-	-	2	1	I					1.2	6		
7 ar bo	Obstructions, including bedrock outcrops, armor layer, LWD jams, grade controls, bridge bed paving, revetments, dikes, vanes, or riprap.	5	2	ю	5	7	N	I	I	1	1			З	10		
8 Bi	Bank soil texture and coherence	2	1	1	1	1	1	I						1.2	11		
9 A	Average bank slope angle	4	3	5	5	5	4	1			_			4.3	12		
10 V	Vegetative or engineered bank protection	6	9	5	5	5	1	1						4.7	13		
11 ^{Bi}	Bank erosion	1	-	2	2	5	1							2	14		
12 N	Mass wasting or bank failure	۲	-	3	1	-	1	I						1.3	u/s		
13 di 13 di 13	Stream crossing alignment with flow and distance from stream crossing to upstream meander impact point.	Evaluate o	Evaluate only for upstream approach	stream ap	proach >									10	D/S		
	-																

Step 1. Provide Basic Information	Š	tep 2. Che	ck Californ	ia Physiogr	Step 2. Check California Physiographic Province	JCe	Step 3	Step 3. Check Stream Type(s)	eam Type		ep 5. Review	Resulting Sco	Step 5. Review Resulting Score of Hydromodification	ification	Step 6. Summarize Site Score and Rating	Rating
Date(s): April 15, 2021		Modoc Plateau	lateau		Coast Ranges	es (Bedrock		Γ	sceptibility (Below) Based	on Stream Chan	nel Type		-
Daniel Price Persons: Samantha Carlson		Cascade Range	Range		Transverse Ranges	Ranges		Cascade					L.	Braided	1 2 2 2 2	r r
Culvert 3 (PM 30.3) Stadlocation Temescol Vollay, CA		Cicro Morra		\boxtimes	onincuration Damage			Cton Dool			E	Engineered Channels	Channels C	Channels		
onditions: Clear sumv		Klamath	Sierra ivevaua Klamath Mountains		Moiave Decert	ind liges		Step-r OUI Engineered /channelized	channeliz		Excellent	R < 49	R < 41	N/A		-
a		Great Vallev	llev		Colorado Desert	iesert		Plane-Red		T	Good 4 Fair 8	49 < R < 85 4	41 < R < 70 70 < R < 98 94	R < 94 94 < R < 129	Rating	2
GPS/*.kml		Basin and Range	d Range]				Pool-Riffle			Poor		+	129 ≤ R		
Photos]							Dune-Ripple		R =	Raw Score			×00		
https://giswest.mbakerintl.com/bakerportal/apps/webappviewer/i Other_ndex.html?id==e43638377ebc4b9d976e670e8745dbbd								Braided								
	-	Step 4. En	ter Stabil	ity Indica	Step 4. Enter Stability Indicator Ratings		at 10 Equally-Spaced Cross	d Cross S	Sections						Notes by Cross Section	
Stability Indicators (Below) and	_	`	~	4	ч	و	~	~	σ	10 10	Overview Entire Reach	itire Reach	Score for	-	Cross section is annineared	
Cross Section (XS) Numbers (Right) CBS chose (chose) boxes for VS unbase CBS	•	•	י ע	F	<u>ר</u>	5	-				Upstream D	Downstream	Reach	•		
ors shout (ureck boxes for AS where ors coordinates recorded) >>			\boxtimes	\boxtimes	\boxtimes	X	\boxtimes	X	\boxtimes	\boxtimes				7		
f 1 Watershed and floodplain activity and impacts	Evaluate	at waters	hed-scale	for upstrea	im and dow	Evaluate at watershed-scale for upstream and downstream reaches	aches >				10	4	7	m		
2 Flow characteristics	Evaluate	at	watershed-scale for	for upstream	and	downstream rea	reaches >				ი	6	6	4		
3 Channel pattern	EHM	~	e	ო	£	-	4	-	-	-			2.3	ß		
4 Entrenchment/channel confinement	I	-	4	4	4	4	5	۰.	٦	2			2.9	9		
5 Bed material	I	4	5	5	2	2	2	4	5	2			3.8	2		
Fs = approximate percentage of sand in bed sediments, 0 to 100.	I	40%	50%	50%	50%	20%	20%	40%	50%	20%				8		
6 Bar development	I	-	2	2	5	-	2	2	4	2			2.3	6		
Obstructions, including bedrock outcrops, armor layer, LWD jams, grade controls, bridge bed paving, revetments, dikes, vanes, or riprap.	I	4	ъ	8	7	ε	з	5	5	ю			4.8	10		
Bank soil texture and coherence	Ι	2	2	2	2	1	2	2	2	+			1.8	11		
9 Average bank slope angle	Ι	2	7	6	6	5	8	1	1	٦			4.8	12		
f 10 ig Vegetative or engineered bank protection	I	-	2	۷	۷	F	۰	+	Ļ	۰			2.4	13		
f 11 Bank erosion	I	-	2	7	2	2	7	1	-	+			2.4	14		
f 12 Mass wasting or bank failure	I	-	2	4	5	4	-	1	-	-			2.2	U/S		
Stream crossing alignment with flow and 13 distance from stream crossing to upstream	Evaluate	only for u	Evaluate only for upstream approach	pproach >									2	D/S		

Step 1. Provide Basic Information	St	Step 2. Check California Physiographic Province	c California Physiographic Pro	hysiogra	ahic Provin	vince	Step 3.	Step 3. Check Stream Type(s)	am Type(s)		. Review Resu	ting Score of I	Aydromodificat	tion	step 5. Review Resulting Score of Hydromodification Step 6. Summarize Site Score and Rating	and Rating
Date(s): April 15, 2021; April 29, 2021		Modoc Plateau	teau		Coast Ranges		Be	Bedrock			stibility (Belov	Susceptibility (Below) Based on Stream Channel Type	eam Channel T	ype		
		Cascade Range	ange		Transverse Ranges	anges	ۍ ا	Cascade		Categony	Pool-riffle, Plane-bed, June-ripula	iffle, bed, Cascade or innle Sten-nool	-	pa		
Mayhew Wash (PM 31.97) Site/Location Temescal Vallev. CA		Sierra Nevada	ada		Peninsular Ranges	anges	Ľ. ₹	Step-Pool		5			els Channels	els		/1.3
Conditions: Clear, sunny		Klamath Mountains	lountains		Mojave Desert	Ļ		Engineered/channelized	Jannelized				\square			
6 I		Great Valley	5V		Colorado Desert	sert	X Pla	Plane-Bed		Fair	r 85 < R < 120	<pre>< 85 41 < K < /0 < 120 70 < R < 98</pre>	< /0 K < 94 < 729 < 94 < 8 < 129	129		GOOD
GPS/*.kml		Basin and Range	Range				۵ ۵	Pool-Riffle				≤ R 98 ≤ R	R 129≤R	ж		
Photos								Dune-Ripple		R = Raw	Raw Score	_	_			
https://giswest.mbakerintl.com/bakerportal/apps/webappviewer/i Otther_ndex.html?id=e42638377ebc4b9d976e670c8745dbdd							Br	Braided								
	S	Step 4. Ente	er Stability	Indicate	Enter Stability Indicator Ratings	at 10 Equally-Spaced Cross	ly-Space	d Cross Se	Sections						Notes by Cross Section	uo
Stability Indicators (Below) and	T	2	ĸ	4	5	9	7	8	9 1	10 Over			Score for Deach	1	Dense brush. Inaccessible.	
GPS shot? (check boxes for XS where GPS														2	Dense brush. Inaccessible.	
and impacts	Evaluate	Evaluate at watershed-scale for upstream and downstream reaches	ed-scale for	upstrean	n and dowr	stream rea	ches >	-		6		ω	8.5	m	Dense brush. Inaccessible.	
2 Flow characteristics	Evaluate	at watershe	watershed-scale for upstream	upstrean	and	downstream rea	reaches >			10		10	10	4		
3 Channel pattern			F	5	5	en en	~	9	2 6	N/A			5.83	5		
4 Entrenchment/channel confinement				4	4	m	2	ო	4 N	N/A			3.33	9		
5 Bed material				5	6	3	8	10	5 N	N/A			3.67	7		
Fs = approximate percentage of sand in bed sediments, 0 to 100.				20%	70%	20%	65% 9	90% 21	20% N	N/A				8		
6 Bar development				-	2	-	7	7	6 N	N/A			4	6		
Obstructions, including bedrock outcrops, armor layer, LWD jams, grade controls, bridge bed paving, revetments, dikes, vanes, or riprap.					+	.	N	5	3 3	N/A			1.67	10	Not within channel reach.	
8 Bank soil texture and coherence				2	8	2	7	10	10 N	N/A			6.5	11		
9 Average bank slope angle				3	2	3	10	. 6	10 N	N/A			6.17	12	1:1, 45 degree slopes, armored slope	d slope
f 10 Vegetative or engineered bank protection				2	5	2	8	10	11 N	N/A			6.33	13		
11 Bank erosion				2	5	2	10	6	10 N	N/A			6.33	14		
12 Mass wasting or bank failure				1	5	1	10	10	0 N	N/A			6	U/S		
Stream crossing alignment with flow and distance from stream crossing to upstream	Evaluate	Evaluate only for upstream approach	tream app	roach >									Э	D/S		

step 1. Provide basic information	S	tep 2. Che	ck California	A Physiogra	Step 2. Check California Physiographic Province	e	Step 3.	Step 3. Check Stream Type(s)	sam Type(s		o 5. Review R	esulting Score	Step 5. Review Resulting Score of Hydromodification	ication	Step 6. Summarize Site Score and Rating	I Rating
Date(s): April 15, 2021		Modoc Plateau	lateau		Coast Ranges	Š	Be	Bedrock		Sus	ceptibility (B	low) Based o	Susceptibility (Below) Based on Stream Channel Type	el Type		
Daniel Price Persons: Samantha Carlson		Cascade Range	Range		Transverse Ranges	langes	ۍ ا ا	Cascade			Pla	Pool-riffle, Plane-bed, Ca Duran risolo S	Cascade or Br	Braided	20 E	Ľ
Culvert 4 (PM 32.3) Site/Location Temescral Valley CA		Sierra Nevada	, epen	\boxtimes	Deninsular Ranges	Zangec	<i>#</i>	Sten-Pool		3		14	~~	Channels		2
Conditions: Clear, sunny		Klamath	Klamath Mountains		Moiave Desert	ert		Engineered/channelized	hannelize		t		++	N/A		Ę
6		Great Vallev	lev		Colorado Desert	sert	N N	Plane-Bed		Γ	Fair 85	49 < R < 85 41 85 < R < 120 70	41 < R < 70 R 70 < R < 98 94 <	R < 94 94 < R < 129	Kating	ع ا
GPS/*.kml		Basin and Range	d Range					Pool-Riffle		1 1	+	+	+	<u>129 < R</u>		
Photos								Dune-Ripple		R = R	Raw Score					
https://giswest.mbakerintl.com/bakerportal/apps/webappvicwer/i Otherndex.html?id=e42638377ebc4b9d976e670c8745dbdd								Braided								
	0	Step 4. Ent	ter Stabili	ty Indicat	Enter Stability Indicator Ratings	at 10 Equally-Spaced Cross	IIy-Space	d Cross Se	Sections						Notes by Cross Section	
Stability Indicators (Below) and	-	2	m	4	ъ.	9	-	∞	م م	10 0		re Reach	Score for	1		
Cross Section (XS) Numbers (Right) GPS shot? (check boxes for XS where GPS											Upstream Do	Downstream	Reach	2		
coordinates recorded) >>	3		3	3	3											
f 1 Watershed and floodplain activity and impacts	Evaluate	at waters	hed-scale fo	or upstrea	m and down	Evaluate at watershed-scale for upstream and downstream reaches	ches >				12	e	7.5	m		
2 Flow characteristics	Evaluate at	at waters	hed-scale fc	ir upstreai	n and dowr	watershed-scale for upstream and downstream reaches	ches >				10	10	10	4		
3 Channel pattern	2	3	3	4	4	EHM	EHM	EHM E	EHM E	EHM			3.2	5		
4 Entrenchment/channel confinement	2	2	2	4	4	1	1	I	1				2.4	9	Cross section is underground.	
5 Bed material	3	7	7	7	7		ļ	I					6.2	7	Cross section is underground.	
Fs = approximate percentage of sand in bed sediments, 0 to 100.	20%	%02	%02	%02	%0 <i>L</i>	I	I	I		1				8	Cross section is underground.	
6 Bar development	-	-	-	2	2	1	1	1	1	1			3.5	6	Cross section is underground.	
Obstructions, including bedrock outcrops,7armor layer, LWD jams, grade controls, bridgebed paving, revetments, dikes, vanes, or riprap.	<u>ن</u>	8	5	4	4	I	I	I	I	I			5.4	10	Cross section is underground.	
Bank soil texture and coherence	3	3	3	3	3	1		I	I				3	11		
9 Average bank slope angle	2	9	9	7	7		1	I					5.6	12		
f 10 ig Vegetative or engineered bank protection	2	2	2	2	2	1		1		1			5	13		
f 11ig Bank erosion	٢	2	2	3	3	1	1	1	1				5.5	14		
12 Mass wasting or bank failure	2	2	2	5	5	1	1	1		1			3.2	n/s		
Stream crossing alignment with flow and distance from stream crossing to upstream meander impact point.	Evaluate	only for u	Evaluate only for upstream approach	proach >									12	D/S		

Step 1. Provide Basic Information	St	tep 2. Che	ck Californi	a Physiogra	Step 2. Check California Physiographic Province	ce	Step 3	Step 3. Check Stream Type(s)	eam Type		5. Review Res	Step 5. Review Resulting Score of Hydromodification	Hydromodifica	tion	Step 6. Summarize Site Score and Rating	ore and Rating
Date(s): April 15, 2021		Modoc Plateau	lateau		Coast Ranges	SS		Bedrock			ptibility (Belo	Susceptibility (Below) Based on Stream Channel Type	ream Channel 1	lype		
Daniel Price Persons: Samantha Carlson		Cascade Range	Range		Transverse Ranges	Ranges		Cascade		Catadoor		Pool-riffle, Plane-bed, Cascade or Dime-rimule Sten-nool		ed		0
Culvert 5 (PM 33.6) Site/Location Temescal Vallev, CA		Sierra Nevada	ada	\boxtimes	Peninsular Ranges	Ranges		Step-Pool					nels Channels	iels	Kaw Score	66.3
Conditions: Clear, sunny		Klamath	Klamath Mountains		Mojave Desert	ert		Engineered/channelized	channeliz		Ŧ	++	\vdash			
		Great Valley	lley		Colorado Desert	esert		Plane-Bed		Fair		49 < R < 85 41 < R < 70 85 < R < 120 70 < R < 98	< 70 R < 94 < 94 < R < 129	94 < 129	Kating	600D
GPS/*.kml		Basin and Range	d Range				^d	Pool-Riffle		Poor	-	$ \rightarrow $		8		
Photos								Dune-Ripple	ai	R = Rav	Raw Score		_			
https://giswest.mbakerintl.com/bakerportal/apps/webappviewer/i Otherndex.html?id=e42638377ebc4b9d976e670c8745dbdd								Braided								
	S	Step 4. En	ter Stabil	ty Indicat	Step 4. Enter Stability Indicator Ratings	at 10 Equally-Spaced Cross	ally-Space	d Cross S	Sections						Notes by Cross Section	ection
Stability Indicators (Below) and	-	6	2	V	Ľ	y	2	×	σ	10 Over	Overview Entire Reach		Score for	,		
Cross Section (XS) Numbers (Right)	•	•	,	•	<u>ר</u>	5	-	- -	ר ר ר ר		Upstream Dow	Downstream	Reach	•		
crossious (check bokes for A5 where or 5 coordinates recorded) >>		×	X	\boxtimes	X	X	\boxtimes	\boxtimes	\boxtimes	\boxtimes				2		
1 Watershed and floodplain activity and impacts	Evaluate	at waters	hed-scale f	or upstrea	m and dow	Evaluate at watershed-scale for upstream and downstream reaches	aches >				 	10	9.5	ε		
2 Flow characteristics	Evaluate	at	watershed-scale for upstream	or upstrea	and	downstream reaches	aches >			-	10	10	10	4		
3 Channel pattern	٢	-	-	۱	-	4	5	7	7	3			3.1	5		
4 Entrenchment/channel confinement	2	-	1	2	2	4	4	4	4	4			2.8	6		
5 Bed material	9	7	8	8	6	5	5	5	5	5			6	7		
Fs = approximate percentage of sand in bed sediments, 0 to 100.	%02	20%	80%	%02	40%	60%	%09	60%	60%	60%				8		
6 Bar development	-	-	-	٦	-	-	-	-	-	-			-	6		
Obstructions, including bedrock outcrops, armor layer, LWD jams, grade controls, bridge bed paving, revetments, dikes, vanes, or riprap.	ę	N	1	-	4	8	10	10	ω	8			5.8	10		
8 Bank soil texture and coherence	-	1	+	٢	1	-	-	-	+	1			-	11		
9 Average bank slope angle	3	4	4	5	7	6	6	6	6	6			7.7	12		
f 10 Vegetative or engineered bank protection	3	1	+	2	7	4	4	4	4	5			4	13		
f 11ig Bank erosion	+	-	٢	1	1	2	2	2	2	2			1.5	14		
f 12ig Mass wasting or bank failure	-	-	-	٦	-	4	2	2	2	4			1.9	U/S		
Stream crossing alignment with flow and distance from stream crossing to upstream meander impact point.	Evaluate	only for u	Evaluate only for upstream approach	oproach >									12	D/S		

Step 1. Provide Basic Information	St	tep 2. Chec	k California	a Physiogra	Step 2. Check California Physiographic Province	e	Step 3.	Step 3. Check Stream Type(s)	am Type(s		5. Review Re	ulting Score o	Step 5. Review Resulting Score of Hydromodification	ition	Step 6. Summarize Site Score and Rating	e and Rating
Date(s): April 15, 2021		Modoc Plateau	ateau		Coast Ranges	S		Bedrock		Susce	ptibility (Bel	ow) Based on S	Susceptibility (Below) Based on Stream Channel Type	Type		
Daniel Price Persons: Samantha Carlson		Cascade Range	lange		Transverse Ranges	Ranges	ٽ □	Cascade		Cato.			Cascade or Braided	led		
Culvert 6 (PM 35.7)		i	_	\bowtie)		-		Caregory		Engineered Cha	Channels Channels	lels	Kaw Score	58.5
		Sierra Nevada	vada		Peninsular Kanges	Kanges		Step-Pool			Excellent R	_	R < 41 N/A	A		
Conditions: Clear, sunny		Klamath	Klamath Mountains		Mojave Desert	ert		Engineered/channelized	hannelize	1		35	70 F	94	Rating	GOOD
Identify Associated File Locations		Great Valley	ley		Colorado Desert	esert		Plane-Bed		Fair			6	< 129		
GPS/*.kml		Basin and Range	l Range				X	Pool-Riffle		Poor		120 <u>≤</u> R 98	98 ≤ R 129 ≤ R	R		
Photos								Dune-Ripple		N - Kav	RdW SCOFE					
https://giswest.mbakerintl.com/bakerportal/apps/webappviewer/i Other_ndex.html?id=e42638377ebc4b9d976e670c8745dbdd								Braided								
	S	itep 4. Ent	er Stabili	ty Indicat	Step 4. Enter Stability Indicator Ratings	at 10 Equally-Spaced Cross	IIy-Space	d Cross Se	Sections						Notes by Cross Section	tion
Stability Indicators (Below) and	l	2	8	4	L.	9	7	8	6	10 Over		e Reach	Score for	1		
Cross Section (XS) Numbers (Right)	1	•)		,	,		,	_		Upstream Dow	Downstream	Reach			
GPS Shot? (check boxes for AS where GPS coordinates recorded) >>						X	\boxtimes	X	X	\boxtimes				2		
Watershed and floodplain activity and impacts	Evaluate	at watersh	ed-scale fo	or upstrea	m and dow	Evaluate at watershed-scale for upstream and downstream reaches	ches >			2.	6	12	10.5	ŝ		
Flow characteristics	Evaluate	at watershed-scale for upstream	ed-scale fo	or upstrea	m and dow	and downstream reaches	iches >			-	12	12	12	4		
Channel pattern	EHM	EHM	EHM	EHM	EHM	2	2	2	2	2			2	5		
Entrenchment/channel confinement	I	1	I	I	1	3	3	3	4	4			3.4	6		
Bed material	I	1	I	I		7	7	7	7	7			7	7		
Fs = approximate percentage of sand in bed sediments, 0 to 100.	Ι	I	I	1	 I	5%	5%	5%	5% 5	5%				8		
Bar development	Ι	1	1	1	1	-	-	-	-	-			-	6		
Obstructions, including bedrock outcrops, armor layer, LWD jams, grade controls, bridge bed paving, revetments, dikes, vanes, or riprap.	I	I	I	I	I	-	-	-	-	-			-	10		
Bank soil texture and coherence	Ι	1	I	I		1	1	+	ب	1			1	11		
Average bank slope angle	I	1	I	I		1	1	3	4	4			2.6	12		
f 10 ig Vegetative or engineered bank protection	Ι	1	I	I		4	4	4	4	4			4	13		
f 11 Bank erosion	Ι	1	I	I		1	1	1	1	1			1	14		
f 12 Mass wasting or bank failure	I	I	I	I	I	1	1	1	+	1			1	U/S		
Stream crossing alignment with flow and distance from stream crossing to upstream	Evaluate	Evaluate only for upstream approach	stream ap	proach >									12	s/u		

